

CURSO ESPECIALIZACION Y GESTION EN ÁRBOLES Y ARBOLEDAS SINGULARES CENEAM VALSAÍN (SEGOVIA) 9-13 ABRIL DE 2018

Métodos de estudio de edad en árboles singulares

Mar Génova Fuster

Profesora Titular mar.genova@upm.es

Métodos de estudio de edad en árboles singulares

Indice

El método dendrocronológico

Muestreo

Solapamiento y sincronización

Los árboles más longevos

Pinus longaeva

Calibración de la datación radiocarbónica

Estimación de la edad en Sequoiadendron giganteum y Taxodium mucronatum

La edad de los árboles en España

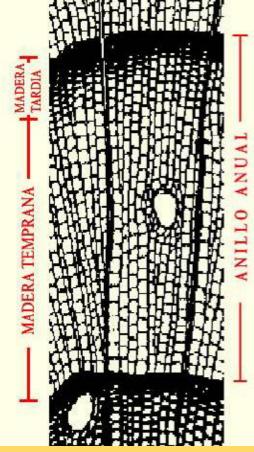
La edad dendrocronológica

La estimación de la edad en árboles singulares

El Proyecto Árboles: Leyendas Vivas (2003-2006)

Los pinos canarios

El pinsapo de la Escalereta


Las sabinas de Calatañazor y La sabina de Moral de Hornuez

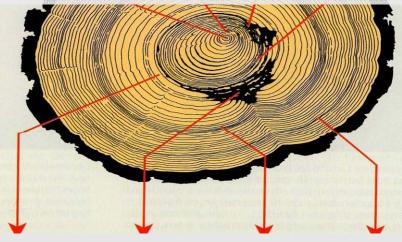
Longevidad de otros ¿árboles? (clones)

El método dendrocronológico

Dendrocronología: conjunto de métodos y técnicas que analizan la información que contienen los anillos de crecimiento desde una perspectiva temporal

El método dendrocronológico

Papelera Española, 1970





Los anillos de crecimiento se acumulan y presentan variaciones interanuales que constituyen el registro de la historia vital del árbol

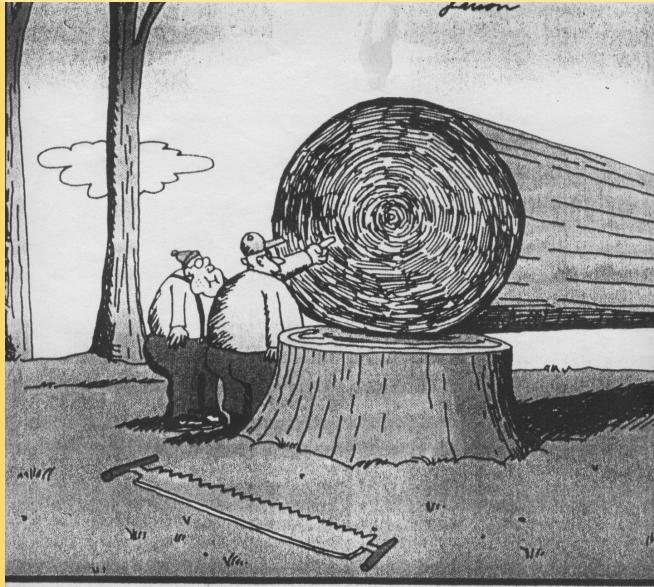
La estimación de la edad de un árbol a través de métodos dendrocronológicos es el método más fiable

Leonardo da Vinci (1452-1519)

Los antiguos griegos (Teofrasto) y, más tarde, Leonardo da Vinci, ya reconocieron que los árboles forman nuevos anillos de crecimiento cada año.

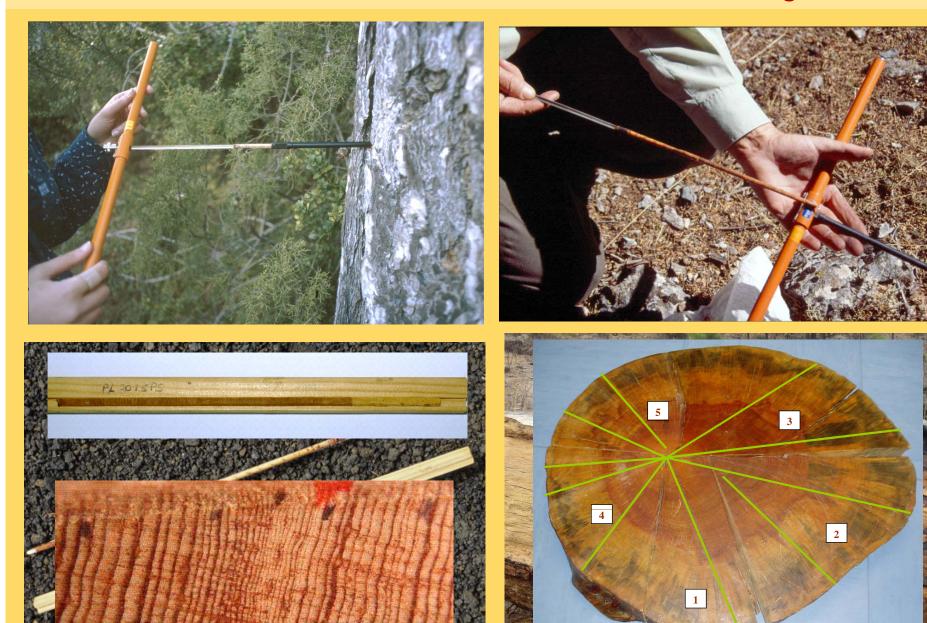
Leonardo incluso llegó a concluir que el ancho relativo de los anillos proporcionaba una medida de la humedad disponible en el momento de su formación.

CURSO ESPECIALIZACION Y GESTION EN ÁRBOLES Y ARBOLEDAS SINGULARES.


Principios de la Dendrocronología:

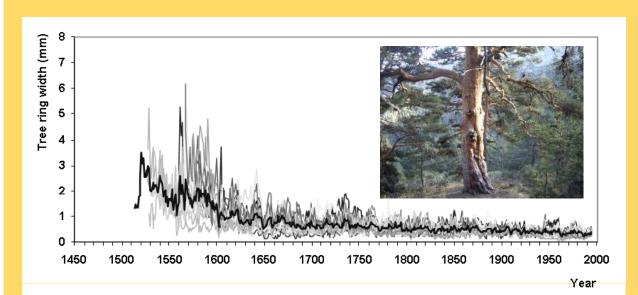
- 1. La serie individual de crecimiento puede descomponerse en un agregado de factores ambientales
- 2. Los procesos de crecimiento están regulados por la variable o factor ambiental más limitante
- 3. Patrones comunes entre varias series de anillos permiten identificar el año exacto en el cual cada anillo fue formado
- 4. La señal ambiental estudiada puede ser maximizada muestreando más de un árbol por sitio
- 5. Los procesos físicos y biológicos que relacionan ahora los factores ambientales con los patrones de crecimiento son los mismos que operaron en el pasado

Actualizados en: Grissino-Mayer H. (2017). The Time is Right: Redefining the Principles in Dendrochronology. Paper presented at the Annual Meeting, American Association of Geographers, 5–9 April 2017, Boston, Massachusetts.

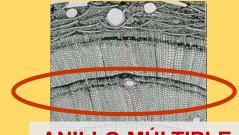

Revised Online, 27 April 2017 and 7 November 2017

El método dendrocronológico. Muestreo

"And see this ring right here, Jimmy? . . . That's another time when the old fellow miraculously survived some big forest fire."


El método dendrocronológico. Muestreo.

El método dendrocronológico


Objetivo:

Elaboración de <u>cronologías</u> anuales que permitan datar diferentes tipos de eventos o analizar las variaciones del crecimiento en función de distintos parámetros ambientales

Las cronologías más largas de *Pinus sylvestris* de la Sierra de Guadarrama (Génova et al. 2011).

Anomalías del engrosamiento

ANILLO MÚLTIPLE

El método dendrocronológico. Solapamiento y sincronización

http://www.bfafh.de/inst4/42/grund1.htm

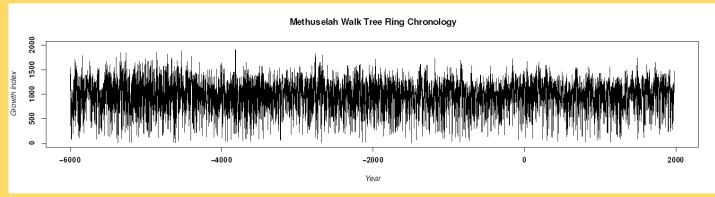
Los árboles más longevos. Pinus longaeva

Habitan en altitudes por encima de los 3.000 metros, en tierras áridas y rocosas azotadas por gélidos vientos.

El tronco está cubierto por una capa gruesa de resina que lo protege de parásitos y de la putrefacción.

Prometheus (4.844 años) fue cortado en 1964 sin conocer su elevada edad

Los árboles más longevos. Pinus longaeva


Muestras extraídas por E. Schulman mediada la década de 1950 fueron analizadas de nuevo por T. Harlan descubriendo que este árbol (aún vivo) tendría **5062** años en 2012.

Desde 1953, el Laboratory of Tree-Ring Research (USA) ha realizado estudios dendrocronológicos de *Pinus longaeva* en la Sierra Nevada de California. Se trata de una fuente única de datos cronológicos precisos, esencial para investigaciones paleoambientales (paleoclimáticas) y geofísicas.

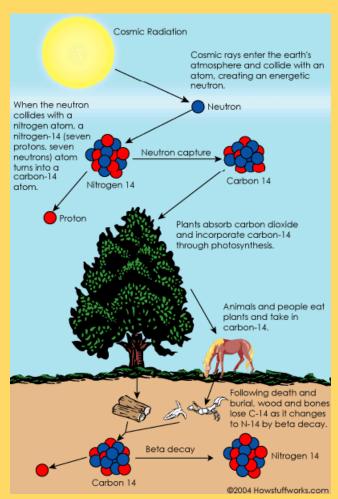
Promedio de anchura de anillo= 0.33 mm, algún ejemplar contiene más de 1100 anillos en 12.7 cm de radio.

Secuencia continua de anillos de árboles vivos y macrorrestos: **8253** años https://www1.ncdc.noaa.gov/pub/data/paleo/treering/chronologies/northamerica/usa/ca535.crn

Los árboles más longevos. Calibración de la datación radiocarbónica

W. Libby (1949) desarrolló la datación por radiocarbono para el análisis temporal.

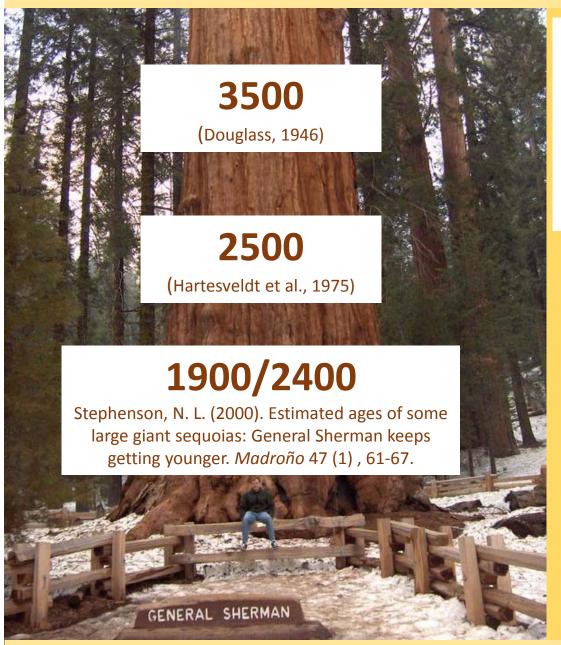
El impacto que la técnica de datación por radiocarbono ha tenido en el hombre moderno la ha convertido en uno de los descubrimientos más significativos del siglo XX.


La arqueología y otras ciencias humanas utilizan la datación por radiocarbono para probar o refutar teorías.

Recientemente también ha encontrado aplicaciones en geología, hidrología, geofísica, ciencia atmosférica, oceanografía, paleoclimatología, e incluso en biomédica.

https://www.radiocarbon.com/espanol/sobre-carbono-datacion.htm

Sin embargo, como se demostró en varios laboratorios, la edad dendrocronológica y la radiocarbónica de *Pinus longaeva* no concordaban exactamente (hace 800 años hasta 15% de diferencia) y.....

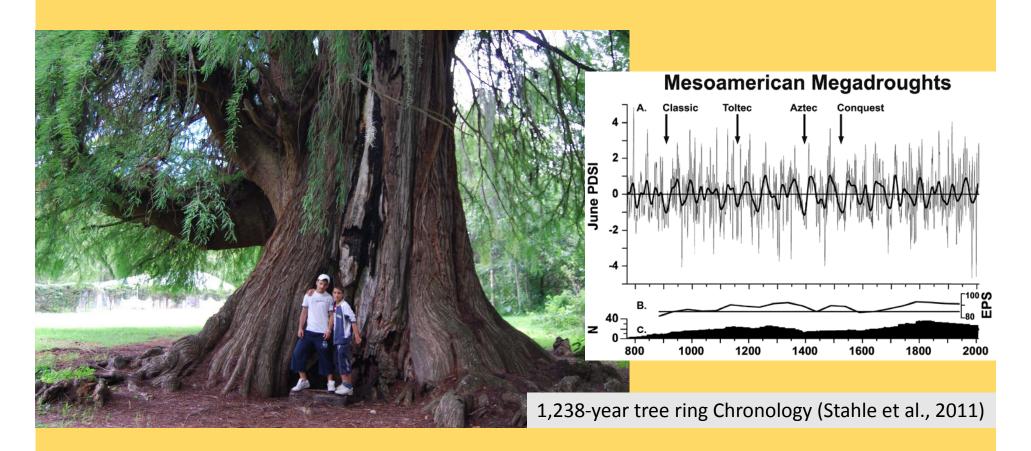

las fechas de radiocarbono convencionales deben ser calibradas, debido a las variaciones temporales en el contenido de radiocarbono en la atmósfera, con modelos procedentes de la datación dendrocronológica.

http://radiocarbon.pa.qub.ac.uk/calib

Los árboles más longevos									
Species Age Ty		Туре	ID	Location	Collector(s), Dater(s), Reference				
5000+ years									
Pinus longaeva	5062*	XD		White Mountains, California, USA	Ed Schulman, Tom Harlan				
4000+ years									
Pinus longaeva	4845*	XD	"Methuselah"	White Mountains, California, USA	Ed Schulman, Tom Harlan				
Pinus longaeva	4844* *	XD	WPN-114, "Prometheus"	Wheeler Peak, Nevada, USA	Currey 1965				
3000+ years									
Fitzroya cupressoides	3622	XD		Chile	Lara and Villalba 1993				
Sequoiadendron giganteum	n 3266* XD CBR26		CBR26	Sierra Nevada, California, USA	Malcolm Hughes, Ramzi Touchan, Ed Wright				
Sequoiadendron giganteum	3220* *	XD	D-21	Sierra Nevada, California, USA	Douglass 1919				
Sequoiadendron giganteum	3075* *	XD	D-23	Sierra Nevada, California, USA	Douglass 1919				
Sequoiadendron giganteum	3033* *	XD	CMC 3	Sierra Nevada, California, USA	Tom Swetnam, Chris Baisan				
2000+ years									
Juniperus occidentalis	2675* *	XD	Scofield Juniper	Sierra Nevada, California, USA	Miles and Worthington 1998				
Pinus aristata	2435	XD	CB-90-11	Central Colorado, USA	Brunstein and Yamaguchi 1992				
Ficus religiosa	2217	н		Sri Lanka	Anonymous				
Sequoia sempervirens	2200* *	RC		Northern California, USA	Emanuel Fritz				
Juniperus occidentalis	2200	XD/E X	Bennett Juniper	Sierra Nevada, California, USA	Peter Brown				
Pinus balfouriana	2110	XD	SHP 7	Sierra Nevada, California, USA	Anthony Caprio				

Estimación de la edad. General Sherman (Sequoiadendron giganteum)

Está considerado como el ser vivo con mayor cantidad de biomasa de la Tierra.


83,8 m de altura (no es el más alto que es una sequoia de 115,5 m), perímetro de tronco de unos **31 m** y unos **11 m** de diámetro en la base.

¿Son los árboles más grandes los más viejos o son los que tienen un mayor crecimiento?

Utilizando la información parcial de muestras de barrena lo más largas posibles y datos completos de la misma especie y entorno, se puede estimar con bastante fiabilidad la edad de ejemplares monumentales

Estimación de la edad. Taxodium mucronatum

Propia de comunidades riparias, es la especie más longeva de México

Uno de los problemas frecuentes para determinar la edad es la presencia de pudriciones y ahuecamientos en el tronco y ramas principales

La edad de los árboles en España. La edad dendrocronológica

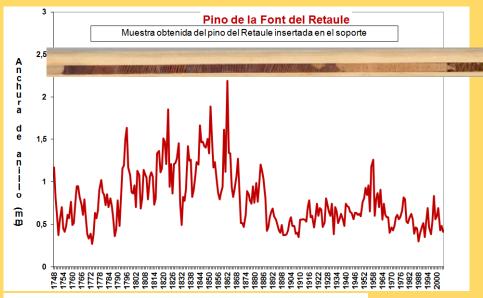
ESPECIE	REGIÓN	Cronología	Edad máxima (2015)	Referencia
Pinus nigra	Béticas		954	CREUS, 1998
Pinus uncinata	Pirineos	1260-2006	755	DORADO-LIÑÁN et al., 2012
	Sistema			
Pinus sylvestris	Central	1513-1994	503	GÉNOVA, 2000
Pinus canariensis	Canarias		508	GÉNOVA et al., 2017
	Cordillera			
Quercus robur	Cantábrica	1523-2003	492	SOUTO-HERRERO et al., 2017
Abies alba	Pirineos	1578-1999	437	MACÍAS et al., 2006
Juniperus thurifera	Ibérico Sur	1681-2010	331	ESPER et al., 2015
Abies pinsapo	Béticas	1690-1999	315	GÉNOVA, 2007

La estimación de la edad en árboles singulares

El Proyecto Árboles: Leyendas Vivas (2003-2006)

Las muestras dendrocronológicas fueron obtenidas en su mayor parte por el equipo de muestreo en campo del Proyecto Leyendas Vivas, utilizando la barrena de Pressler. La preparación y medición de las muestras fueron llevadas a cabo por Estefanía Muñoz y Mar Génova, utilizando las instalaciones y el equipo del laboratorio de Dendrocronología de la Universidad Politécnica de Madrid (Génova, 2009).

El Proyecto Árboles: Leyendas Vivas (2003-2006)

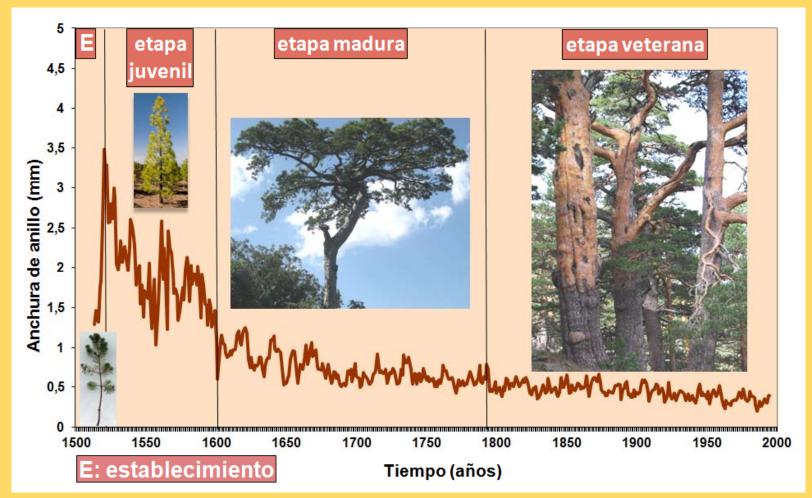

Método

Se realizaron estimaciones de la edad de 36 ejemplares singulares de: Alnus glutinosa Castanea sativa Crataegus monogyna Fagus sylvatica Ficus carica Juglans regia Juniperus cedrus Juniperus thurifera Pinus canariensis Pinus halepensis Pinus nigra Pinus pinaster Pinus pinea Pinus sylvestris Pyrus communis Quercus faginea Quercus pyrenaica Quercus robur Taxus baccata

Tilia platyphyllos

1. Muestreo y análisis de los datos y de los patrones de crecimiento

20.7 cm de longitud, 25% del radio estimado 257 anillos, media (mm): 0.78


Pinus nigraCatalogado como Árbol Monumental en Cataluña
33 m de altura y 5 m de perímetro (80 cm de radio)

2. Localización de la información disponible en la bibliografía

Fulé, P. Z., Ribas, M., Gutiérrez, E., Vallejo, R., & Kaye, M. W. (2008). Forest structure and fire history in an old *Pinus nigra* forest, eastern Spain. Forest Ecology and Management, 255(3-4), 1234-1242.

El Proyecto Árboles: Leyendas Vivas (2003-2006)

3. El grosor de los anillos en función de la edad: modelos de crecimiento

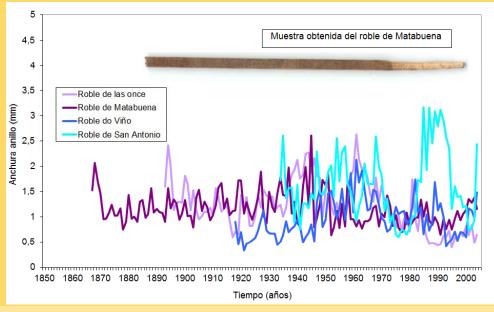
Estimaciones para Pinus nigra:

- * Establecimiento, 15 anillos, media 3 mm
- * Juvenil y madura, 100 anillos, media 2 mm
- * Veterana, los restantes anillos, media 0.8 mm

Estimación para el Pi Gros del Retaule: 750 años

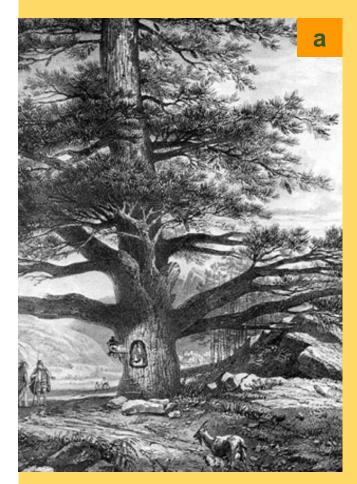
El Proyecto Árboles: Leyendas Vivas (2003-2006)

EJEMPLAR	Especie	Radio estimado (cm)	Muestra obtenio	ıestra obtenida	
Roble do Viño	Quercus robur	117	Longitud (cm): N.º anillos: Anillo medio (mm):	9 87 0.97	677
Carballo de San Antonio	Quercus robur	106	Longitud (cm): N.º anillos: Anillo medio (mm):	15 71 1.62	544
Roble de Matabuena	Quercus pyrenaica	81	Longitud (cm): N.º anillos: Anillo medio (mm):	16 138 1.16	538
Roble de las Once	Quercus faginea	54	Longitud (cm): N.º anillos: Anillo medio (mm):	15 112 1.23	292


Robles

Referencias

Creus et al. (1995). Cambio climático en Galicia. Xunta de Galicia, 184 pp.
Rozas V., 2001. Dinámica forestal y tendencias sucesionales en un bosque maduro de roble y haya de la zona central de la Cornisa Cantábrica. Ecologia, 15: 179-211.
Rozas V., 2004. Análisis estructural y dendroecológico del roble (*Quercus robur*) en las carbayedas de Tragamón y de la Isla, Gijón (Asturias). Ecologia, 18: 127-145.

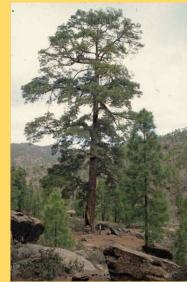

www.dendrocronologia.com

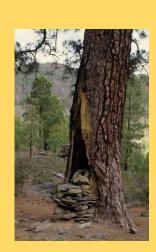


Los pinos canarios

El pino de la Virgen de El Paso (La Palma)

Diversas imágenes del **Pino de la Virgen** a lo largo del tiempo. **a**: Reproducción de la lámina dibujada por Berthelot (1880). **b**: Reproducción de una fotografía anónima conservada en el Museo Canario y fechada a principios del siglo XX. **c**: Imagen reciente.




El pino de las dos Pernadas

El pino de Pilancones (G. Canaria)

Los pinos canarios. Muestras dendrocronológicas

Pinus canariensis Isla de La Palma 1558-1996 438 GÉNOVA M. & SANTANA C. (2006)

Tabla 5. Parámetros y valores utilizados para estimar la edad de ejemplares monumentales de Pinus canariensis

Ejemplar	Radio estimado	Parámetros	Se	egmento inte (estimación	Segmento externo	Edad estimada	
Ejempiai	(cm)	1 at ametros	Porción Porción media inicial (2 tipos de estimación			(muestra)	(años)
Pino Gordo	143	Longitud (cm) N.º anillos Grosor medio (mm)	38 100 3,8	89 468 1,9	89 577 1,54	16 128 1,14±0,65	696/805
Pino de las Dos Pernadas 134		Longitud (cm) N.º anillos Grosor medio (mm)	32 100 3,2	79 493 1,6	79 409 1,93	$23 \\ 230 \\ 0,98 \pm 0,93$	823/739
Pino de la Virgen	o de la Virgen 120		31 100 3,1	57 380 1,5	57 331 1,72	32 344 $0,93 \pm 0,59$	824/775
Pino de Casandra	78	Longitud (cm) N.º anillos Grosor medio (mm)	28 100 2,8	34 242 1,4	34 566 0,60	$ \begin{array}{c} 16 \\ 188 \\ 0,85 \pm 0,54 \end{array} $	530/854
Pino de Pilancones 83 Longitud (cm) N.º anillos Grosor medio (45 100 4,5	8 36 2,2	8 71 1,12	$30 \\ 207 \\ 1,37 \pm 1,15$	343/378

Los pinos canarios

	Ejemplar	Grosor medio de los anillos en mm
		(periodo 1900-1995)
	Pino del Molino del Viento (S. Juan de La Rambla, Tenerife)	<u>1,42</u>
	Pino Gordo (Vilaflor, Tenerife)	1,14
	Pino de las Dos Pernadas (Vilaflor, Tenerife)	0,63
4	Pino de La Virgen (El Paso, La Palma)	0,62
	Pino de Pilancones (S. Bartolomé de Tirajana, Gran Canaria)	1,48
	Pino de Gáldar (Gáldar, Gran Canaria)	1,07
1	Pino de Casandra (Tejeda, Gran Canaria)	0,96

El pino del Molino del Viento (Tenerife)

ETAPAS DE CRECIMIENTO

253 anillos (1757-2009)

Edad estimada: **356/439** (Génova, 2010)

Los pinos canarios. Estudio de secciones (Gran Canaria)

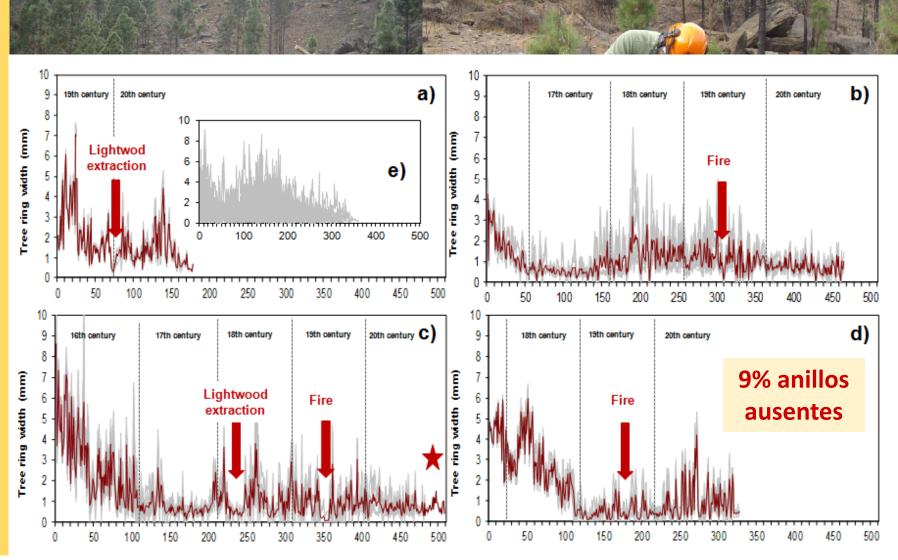
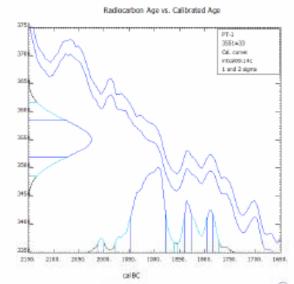


Figure 1. Tree-ring series analysed in the present paper: a) Pino Seco (SE), b) Pino de La Lajilla (LA), c) Pino de Pilancones (PI), d) Pino de Gáldar (GA), e) Inagua series. The light grey lines indicate the measurements taken in the different radii or cores (Inagua series) and the dark red ones the averages for each tree. The arrows indicate the most significant events, the star the maximum number of continuously MORs (56) and the dashed lines its approximate time range. Génova et al., 2017

Los pinos canarios. Pino subfósil en La Palma.

NACIONAL DE ACELERADORES

Informe de Datación y Calibración

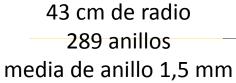

CNA1368 Código de muestra: PT-1

Tratamiento aplicado: Limpieza Acido-Base-Acido,

d¹³C -26.11 ± 0.85 %

Calibración 2 σ (95% pr

Cambracion 26 (95% pri Comienzo:Fin) Årea re 3962 cal BP/ 3722 cal BP

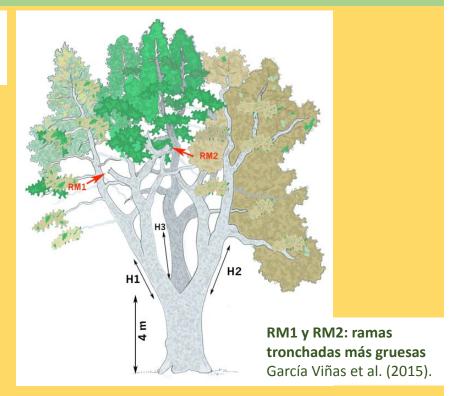

Francisco Javier Santos Arávalo

CALTH HADIOCARRON CALTHRATION PROGRAM* Stutver, M., Reiner, P.J., Reiner, E.W., 2006. Calib 6.0 Copyright 2009 M Stulver and BJ Reimer *To be used in conjunction with IntCal09, Reimer, P.J., et al. 2009 Endiocarbon 51 (4) 1111-1150.

Centro Nacional de Aceleradores

Avd Thomas Alva Edison, nº 7, 41092, Sevilla, España • Tel: +34 954 46 05 53 • Fax: +34 954 46 01 45 http://www.centro.us.es/cna . E-Mail:ena/ilus.es

Estimación de la edad en los pinos canarios


EJEMPLAR	Radio (cm)	Tipo de muestra	Nº anillos conocido	Edad estimada
Virgen de El Paso	120	Barrena (32 cm)	344	824/ 775, 800
Dos Pernadas Vilaflor	134	Barrena (23 cm)	230	823/ 739, 781
Gordo de Vilaflor	143	Barrena (16 cm)	128	805/ 696, 750
Casandra	78	Barrena (16 cm)	188	854/ 530, 692
Molino del Viento	83	Barrena (42 cm)	253	439/ 356, 398
Pilancones	83	Barrena (30 cm)	207	378/ 343
Gáldar	51	Sección	178	328
Seco	35	Sección	202	202
La Lajilla	65	Secciones	466	466
Pilancones	76	Secciones	508	508
Subfósil (inédito)	43	Sección	289	

(Génova 2009, 2010, 2017; Génova y Santana 2006)

El pinsapo de la Escalereta

El 23 de noviembre de 2001 fue declarado monumento natural de Andalucía

Radio estimado: 81 cm

LONGEVIDAD DEL PINSAPO

Año 1928, Luis Ceballos. El pinsapo y el abeto de Marruecos. I.N.I.E.	
Sierras Bermeja y Nicves. Contó	300 anillos
Estima la longevidad entre	4 y 5 siglos
Año 1938. Ezequiel González. Tratado general de Selvicultura, Valencia, tomo I. Cree que el pinsapo pertenece al grupo IV	
Escimación:	150-300 años
Año 1967. Diodoro Soto. Tajos de Castro, Grazalema, Contó	487 anillos
Año 1968. Enrique Soto. Sierra Bermeja, Genalguacil, Contó	346 anillos
Año 1968. Diodoro Soto. Talaseltán, Marruecos, Contó	370 anillos
Año 1969. Diodoro Soto. Batranco Alto de Los Pedernales, Grazalema, Contó	275 anillos
Año 1971. Comunicación verbal, de M. Al BOUHAU a DIODORO SOTO; contó en Tazant, Marruecos, aproximadamente	500 anillos

Soto, 1998

El pinsapo de la Escalereta

Con los datos dendrocronológicos disponibles se realizó una estimación de la edad de este árbol monumental, teniendo en cuenta que no se pudieron extraer muestras del ejemplar

Etapas	Nº árboles	Grosor me	Radio medio estimado (mm)				
Zupus	analizados	G _a (mínimo)	G _b (medio)	G _c (máximo)	R _a (mínimo)	R _b (medio)	R _c (máximo)
1. EJ: Establecimiento y juvenil (0 - 100 años)	26	1,84	2,7	3,56	184	270	356
2. EM: Etapa madura (100-300 años)	13	0,76	1,2	1,64	152	240	328
3. EV: Etapa veterana (>300 años)	1	_	0,8	_	_	_	_

Edad estimada EPE= EJ+EM+EV

EPE_a = **892** años

 $EPE_b = 675 \text{ años}$

EPE_c = 457 años

De acuerdo a nuestra experiencia y dada la situación en umbría y cercana a curso de agua temporal y gran desarrollo del ejemplar (posiblemente en situación dominante durante toda su vida) nos inclinamos a estimar su edad entre **457** y **675** años

Las sabinas de Calatañazor

Las sabinas de Calatañazor

Se estudiaron 25 árboles de los que se extrajo, al menos, 2 muestras con barrena de Pressler. El muestreo se realizó en 2 campañas de campo (05/2004 y 07-10/2012)

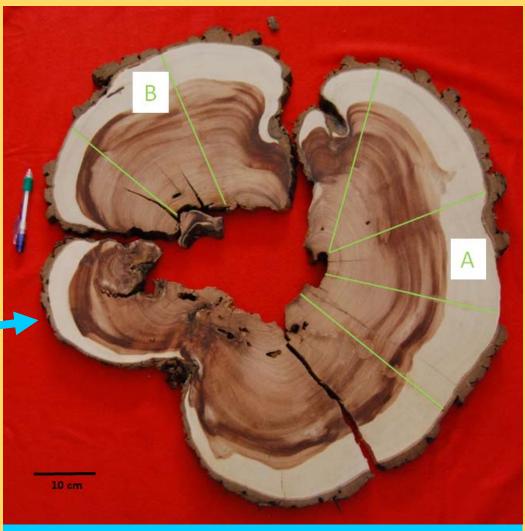
								270
ID	RE (cm)	LME (cm)	NA	Cronología	RI (cm)	NAI	EE (años)	Pudriciones internas
2367	18	16,9	121	1892 2012	1,1	6	127	no
308	27	13,0	120	1884 2003	14,0	93	213	si
1377	25	22,7	193	1820 2012	2,3	58	251	no
854	32	13,4	144	1860 2003	18,6	109	253	si
1944	32	23,9	211	1802 2012	8,1	48	259	no
477	32	25,0	216	1797 2012	7,0	44	260	no
1623	33	29,5	244	1768 2011	3,5	18	262	no
844	35	30,7	249	1754 2002	4,3	25	274	no
107	38	17,0	150	1854 2003	21,0	124	274	si
140	37	15,2	150	1854 2003	21,8	128	278	si
2364	33	20,8	207	1806 2012	12,2	72	279	si
1318	27	22,1	256	1757 2012	4,9	26	282	no
600	42	18,6	138	1866 2003	23,4	146	284	si
980	38	15,8	155	1855 2009	22,2	131	286	si
1070	36	10,2	126	1878 2003	25,8	161	287	si
2329	28	12,6	220	1793 2012	15,4	81	301	si
2257	34	28,0	274	1738 2011	6,0	33	307	no
385	38	17,9	173	no	20,1	134	307	si
1039	40	12,3	97	1907 2003	27,7	213	310	si
1370	35	18,1	211	1800 2010	16,9	106	317	si
1048	35	12,6	199	1805 2003	22,4	124	323	si
1369	41	21,0	219	1792 2010	20,0	105	324	si
590	48	12,5	123	1881 2003	35,5	222	345	si
1246	36	8,0	186	no	28,0	165	351	si
1480	38	9,0	113	1900 2012	29,0	242	355	si
Media	34,32	17,872	179,8	1738-2012	16,448		284	

La sabina de Moral de Hornuez

Incluida en el Catálogo de Especímenes Vegetales de Singular Relevancia de la Junta de Castilla y León

19 m de altura y 5,18 m de perímetro

El 8/02/2010 se publica la noticia de la caída de la sabina después de un vendaval



La sabina de Moral de Hornuez

Se estima que su edad sería al menos el doble de la de la rama, es decir unos <u>600</u> años.

2,26 m de perímetro, 36 cm de radio máximo

270 anillos de crecimiento en 29 cm, edad estimada en **316** años

Longevidad de otros ¿árboles? (clones)

Pando (El gigante temblón) es una colonia clonal masculina surgida a partir de un único álamo temblón (*Populus tremuloides*) localizada en el estado de Utah.

Ocupa un territorio próximo a los 0.5 km², en el que crecen unos 50.000 troncos genéticamente iguales, que no superan los 200 años.

A partir de marcadores genéticos se ha determinado que toda ella forma parte de un único organismo viviente con un sistema masivo de raíces bajo tierra con una edad aproximada de **80.000** años.

80.000 años??, estimación basada en un conjunto complejo de factores: historia local del entorno (la germinación es posible desde hace 10.000 años) o la tasa de crecimiento en comparación con otras colonias semejantes.

Mitton, J. B. & Grant, M. C. (1996). Genetic Variation and the Natural History of Quaking Aspen, BioScience 46 (1): 25-31.

La edad de otros ¿árboles? (clones)

Jurupa Oak (Quercus palmeri).

Se trata de una colonia clonal que ha sobrevivido aproximadamente **13.000** años a través de la reproducción vegetativa.

La edad se ha estimado por su tamaño y las estimaciones del crecimiento anual de múltiples poblaciones.

May, M., Provance, M., Sanders, A., Ellstrand, N., & Ross-Ibarra, J. (2009). A Pleistocene Clone of Palmer's Oak Persisting in Southern California PLoS ONE, 4 (12).

Old Tjikko (Picea abies).

Los ejes no viven más de 600 años pero restos antiguos y vivos de sus raíces fueron datados por radiocarbono (**9.550** años). En Suecia, serían imposibles árboles mucho más viejos porque las capas de hielo cubrieron el país hasta el final de la última glaciación, hace alrededor de 11.000 años.

Öberg, L., & Kullman, L. (2011). Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic, 183-196.

La edad de otros ¿árboles? (clones)

REFERENCIAS

García Viñas, J.I., Génova Fuster, M., Cobos Suárez, P. (2015). Estudio del estado actual de pinsapo de la Escalereta del Parque Natural de la Sierra de las Nieves y su relación con factores biológicos y ecológicos. Junta de Andalucía.

Génova M. (2007). El crecimiento de *Abies pinsapo* y el clima de Grazalema: aportaciones dendroecológicas. Investigacion Agraria. Sistemas y Recursos forestales, 16 (2): 145-157.

Génova, M. (2009). Estudios de edad: Estimación por métodos dendrocronológicos, en Gigantes y Ancianos de los bosques españoles: 51-65. Bosques sin Fronteras. Madrid.

Génova, M. (2010). Estimación mediante técnicas dendrocronológicas de la edad del Pino canario localizado en el Término Municipal de San Juan de la Rambla (Tenerife). Ayuntamiento de San Juan de la Rambla (Tenerife).

Génova M. (2013). Dendroclimatología de *Abies pinsapo* Boiss. En: Los pinsapares en Andalucía (*Abies pinsapo* Boiss.). Conservación y sostenibilidad en el siglo XXI, López Quintanilla J. (coord.), 227-233. Servicio de Publicaciones de la Universidad de Córdoba. ISBN: 978-8499271378.

Génova, M. (2014). Estudio Dendrocronológico de *Juniperus thurifera* en Calatañazor (Soria). Junta de Castilla y León. Génova M. & Santana C. (2006). Crecimiento y longevidad en el pino canario (*Pinus canariensis* Smith.). Investigacion Agraria. Sistemas y Recursos forestales, 15 (3): 296-307.

Génova, M.; Santana, C.; Martínez, B. (2017). Short communication: Many missing rings in old Canary pines can be related with age, fires and traditional uses. Forest Systems 26, 2, eSC02.

Soto D. (1998). Razas y variedades de Abies pinsapo, Boiss. Ecología, 12: 225-236.

Muchas gracias por su atención